翻訳と辞書
Words near each other
・ Weyhill
・ Weyhill Preparatory School
・ Weyhill railway station
・ WEYI-TV
・ Weyib River
・ Weyinmi Efejuku
・ Weyl (crater)
・ Weyl algebra
・ Weyl character formula
・ Weyl curvature hypothesis
・ Weyl distance function
・ Weyl equation
・ Weyl group
・ Weyl integral
・ Weyl law
Weyl metrics
・ Weyl module
・ Weyl scalar
・ Weyl semimetal
・ Weyl tensor
・ Weyl transformation
・ Weyl's inequality
・ Weyl's lemma (Laplace equation)
・ Weyl's postulate
・ Weyl's theorem
・ Weyl's theorem on complete reducibility
・ Weyl's tile argument
・ Weylan Harding
・ Weyland
・ Weyland ringtail possum


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Weyl metrics : ウィキペディア英語版
Weyl metrics
In general relativity, the Weyl metrics (named after the German-American mathematician Hermann Weyl) refer to the class of ''static'' and ''axisymmetric'' solutions to Einstein's field equation. Three members in the renowned Kerr–Newman family solutions, namely the Schwarzschild, nonextremal Reissner–Nordström and extremal Reissner–Nordström metrics, can be identified as Weyl-type metrics.
==Standard Weyl metrics==

The Weyl class of solutions has the generic form〔Jeremy Bransom Griffiths, Jiri Podolsky. ''Exact Space-Times in Einstein's General Relativity''. Cambridge: Cambridge University Press, 2009. Chapter 10.〕〔Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, Eduard Herlt. ''Exact Solutions of Einstein's Field Equations''. Cambridge: Cambridge University Press, 2003. Chapter 20.〕


(1)\quad ds^2=-e^dt^2+e^(d\rho^2+dz^2)+e^\rho^2 d\phi^2\,,

where \psi(\rho,z) and \gamma(\rho,z) are two metric potentials dependent on ''Weyl's canonical coordinates'' \. The coordinate system \ serves best for symmetries of Weyl's spacetime (with two Killing vector fields being \xi^t=\partial_t and \xi^\phi=\partial_\phi) and often acts like cylindrical coordinates,〔 but is ''incomplete'' when describing a black hole as \ only cover the horizon and its exteriors.
Hence, to determine a static axisymmetric solution corresponding to a specific stress–energy tensor T_, we just need to substitute the Weyl metric Eq(1) into Einstein's equation (with c=G=1):


(2)\quad R_-\fracRg_=8\pi T_\,,
and work out the two functions \psi(\rho,z) and \gamma(\rho,z).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Weyl metrics」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.